# 6 2 (KnotPlot image) See the full Rolfsen Knot Table. Visit 6 2's page at the Knot Server (KnotPlot driven, includes 3D interactive images!) Visit 6 2 at Knotilus! Dror likes to call 6_2 "The Miller Institute Knot", as it is the logo of the Miller Institute for Basic Research.

### Knot presentations

 Planar diagram presentation X1425 X5,10,6,11 X3948 X9,3,10,2 X7,12,8,1 X11,6,12,7 Gauss code -1, 4, -3, 1, -2, 6, -5, 3, -4, 2, -6, 5 Dowker-Thistlethwaite code 4 8 10 12 2 6 Conway Notation 

### Three dimensional invariants

 Symmetry type Reversible Unknotting number 1 3-genus 2 Bridge index 2 Super bridge index $\{3,4\}$ Nakanishi index 1 Maximal Thurston-Bennequin number [-7][-1] Hyperbolic Volume 4.40083 A-Polynomial See Data:6 2/A-polynomial

### Four dimensional invariants

 Smooth 4 genus $1$ Topological 4 genus $1$ Concordance genus $2$ Rasmussen s-Invariant -2

### Polynomial invariants

 Alexander polynomial $-t^2+3 t-3+3 t^{-1} - t^{-2}$ Conway polynomial $-z^4-z^2+1$ 2nd Alexander ideal (db, data sources) $\{1\}$ Determinant and Signature { 11, -2 } Jones polynomial $q-1+2 q^{-1} -2 q^{-2} +2 q^{-3} -2 q^{-4} + q^{-5}$ HOMFLY-PT polynomial (db, data sources) $z^2 a^4+a^4-z^4 a^2-3 z^2 a^2-2 a^2+z^2+2$ Kauffman polynomial (db, data sources) $z^2 a^6+2 z^3 a^5-z a^5+2 z^4 a^4-2 z^2 a^4+a^4+z^5 a^3-z a^3+3 z^4 a^2-6 z^2 a^2+2 a^2+z^5 a-2 z^3 a+z^4-3 z^2+2$ The A2 invariant $q^{16}-q^8-q^4+q^2+1+ q^{-2} + q^{-4}$ The G2 invariant $q^{86}-q^{84}+q^{82}-q^{80}-q^{78}-q^{74}+3 q^{72}-2 q^{70}+q^{68}+2 q^{62}-q^{60}+q^{58}+q^{56}+q^{52}+3 q^{46}-3 q^{44}+q^{42}-q^{40}-q^{38}+2 q^{36}-4 q^{34}+q^{32}-2 q^{30}-3 q^{24}+q^{22}-q^{20}-q^{14}+q^{12}+q^{10}+2 q^6-q^4+2 q^2+1- q^{-2} +3 q^{-4} - q^{-6} +2 q^{-8} - q^{-12} +2 q^{-14} + q^{-18}$